Dual Band Wireless Router

Dual Band Wireless Router

The Meizo RD58 series Dual SIM 4G Ethernet wireless router is designed to offer a backup 3G/4G network when the primary network fails. The router is using Broadcom chipset, integrated with WAN, LAN, SIM, VPN, VRRP, WiFi, and Serial port services, product line supporting the following radio...
Chat Now

Product Details

The Meizo RD58 series Dual SIM 4G Ethernet wireless router is designed to offer a backup 3G/4G network when the primary network fails. The router is using Broadcom chipset, integrated with WAN, LAN, SIM, VPN, VRRP, WiFi, and Serial port services, product line supporting the following radio access technologies: LTE, HSPA+, HSPA, UMTS, EDGE, CDMA2000, GPRS. By owning automatic connection monitoring and heartbeat detection, make sure the router to be always online.


The router is using Industrial Grade equipment design standards, passed CE and EMC test, stable and reliable. External antenna connectors make it possible to attach desired antennas and to easily find the best signal location. Multiple encryption protocols as L2TP, IPSec, PPTP and GRE are owned, making it ideal solution for applications in which high data bandwidth and strong stability is required.


Main Features

Hardware Specifications

Software Functions

● Support public and private APN network
● Dual SIM ensures that a backup 3G/4G network can take over should the primary network fail. The router detects a network problem and fails over to a standby SIM/APN, ensuring the customer’s SLAs are upheld.
● Dedicated hardware and software watchdog are designed to support system running reliable.
● ICMP detection and Heartbeat detection ensure the router to be always on line.
● Reboot the router remotely via SMS.
● Incorporate Virtual Router Redundancy Protocol (VRRP), facilitating 3G/4G WAN backup services to existing fixed line routers, providing both WAN and router redundancy to critical business applications.
● Offers business grade security and advanced routing features IPSec (3Des and AES), L2TP, PPTP, GRE as standard.
● Low-voltage, over current, over voltage, anti-reverse protection
● Wide Power Input DC7-36V
● Standard RS232/485 interface to connect with serial devices.
● Router Factory Default Settings can be configured freely.
● System logs can be viewed from local or remote.
● Support WLAN(300Mbps 802.11b/g/n)
● Support SNMP v1/v2/v3
● LEDS for status monitoring (showing Power, System, Internet, VPN, Signal strength).

CPU
● RAM:512Mbit FLASH:128Mbit
Power
● Input DC 7-36V(Standard DC12V)
Environment
● Storage temperature:-40℃~80℃
● Work temperature:-30℃~70℃
● Humidity:<95%
Dimension
● Unit size L*W*H:200*117.5*32.7mm
● Metal Shell, IP30
● Package weight:830g
Interface
● 2 SIM card slots
● 1 WAN 10/100Mb RJ45 port
● 4 LAN 10/100Mb RJ45 port
● 1 RS232 or RS485 serial port
● 1 5-PIN connector for GND, RX, TX, Power
Antenna(female)
● ANT1 for Cell, ANT2,3 for WiFi
EMC
● Electrostatic discharge immunity:EN6100-4-2, level 2
● RFEMS:EN6100-4-3, level 2
● Surge:EN6100-4-3, level 2
● PFMF:EN6100-4-6, level 2
● Shockwave immunity:EN6100-4-8, Horizontal / vertical direction 400A/m(>level 2)
Physical property
● Shockproof:IEC60068-2-27
● Drop test:IEC60068-2-32
● Vibration test:IEC60068-2-6

VPN
● IPSec client
● PPTP client
● L2TP server and client
● GRE client
WIFI
● Transmitting power: 17dbm
● Distance:Cover a radius of 100 meters in open area test
● Allow 50 users to access in theory
DTU(Serial port data transmission)
● TCP & UDP Server/Client
● Baud rate: 300~115200bps
● Up to 4 data service center communication
NAT
● Port Mapping
● Port Triggering
● DMZ
Firewall
● IP filtering
● MAC filtering
● URL filtering
QOS
● Manage uplink/downlink bandwidth via port or IP
Management
● Web
● Telnet
● TR-069 platform
Routing
● Static Routing
● Policy-Based Routing.
● Dynamic Routing


Model

Frequency & Band

Bandwidth(UL/DL)

Consumption

WiFi (-W)

Serial(-S)

Power

RD58A
(cat6, America network)

● FDD-LTE: 2100MHz(B1),1900MHz(B2), 1800MHz(B3), AWS(B4), 850MHz(B5), 2600MHz(B7),700MHz(B12),700MHz(B13), 800MHz(B20), 1900MHz(B25), 850MHz(B26), 700MHz(B29), 2300MHz(B30),
● TDD-LTE: 2500MHz(B41)
● UMTS/HSPA+: 2100MHz(B1), 1900MHz(B2),1800MHz(B3), 1700MHz(B4), 850MHz(B5), 900MHz(B8)

FDD-LTE:50Mbps/300Mbps
DC HSPA+:5.76Mbps/42Mbps

Work:0.46A@12V DC
Peak:0.58A@12V DC

802.11n 300Mbps Option

RS232/RS485 Option

US/EU standard
Input: AC100~240V
Output: DC12V Option

RD58C
(China & Asia network)

● FDD-LTE: 2100MHz(B1), 1800MHz(B3), 900MHz(B8)
● TDD-LTE: 2600MHz(B38), 1900MHz(B39), 2300MHz(B40), 2500MHz(B41)
● UMTS/HSPA+: 2100MHz(B1), 850MHz(B5), 900MHz(B8), 1800MHz(B9)
● TD-SCDMA: B34, B39

FDD-LTE:50Mbps/150Mbps
TDD-LTE:10Mbps/112Mbps
DC HSPA+:5.76Mbps/42Mbps

Work:0.41A@12V DC
Peak:0.50A@12V DC

RD58E (Europe & Asia network)

● FDD-LTE: 2100MHz(B1), 1800MHz(B3), 850MHz(B5), 2600MHz(B7), 900MHz(B8), 800MHz(B20)
● TDD-LTE: 2600MHz(B38), 1900MHz(B39), 2300MHz(B40), 2500MHz(B41)
● UMTS/HSPA+: 2100MHz(B1), 1900MHz(B2), 850MHz(B5), 800MHz(B6), 900MHz(B8),

FDD-LTE:50Mbps/150Mbps
TDD-LTE:10Mbps/112Mbps
DC HSPA+:5.76Mbps/42Mbps

Work:0.41A@12V DC
Peak:0.50A@12V DC

RD58J
(cat6, Japan & Australia network)

● FDD-LTE: 2100MHz(B1), 1800MHz(B3), 850MHz(B5), 2600MHz(B7), 900MHz(B8), 800MHz(B18), 800MHz(B19), 1500MHz(B21), 700MHz(B28),
● TDD-LTE: 2600MHz(B38), 1900MHz(B39), 2300MHz(B40), 2500MHz(B41)
● WCDMA: 2100MHz(B1), 850MHz(B5), 850MHz(B6), 900MHz(B8), 1700MHz(B9), 850MHz(B19)
● TD-SCDMA: B39

FDD-LTE:50Mbps/300Mbps
TDD-LTE:10Mbps/112Mbps
DC-HSPA+: 5.76Mbps/42Mbps

Work:0.46A@12V DC
Peak:0.58A@12V DC


LoRa wireless tutorial
LoRa technology is used as wide area network wireless technology. There are different frequency bands defined in US (902 to 928 MHz), EU (863 to 870 MHz) , China (779 to 787 MHz) and other regions to be used in LoRa wireless technology based network. It is low power, long range and low data rate based technology developed with initiative by Samtech.


LoRa network consists of gateways, network servers and end devices. The network topology is star of stars. End devices are also known as motes and gateways are known as base stations or concentrators in LoRa network system.


End devices and Gateways are connected wirelessly using ISM bands specified with single hop. Gateways and network servers are connected using IP backhaul connections.


image001.jpg


The figure-1 depicts LoRa network architecture. Customer information database is housed in servers. Communication between end devices and gateways are carried at different channels and different data rates. LoRa supports adaptive data rate from 0.3 Kbps to 50 Kbps.


LoRa Frame Structure

image003.jpg

The transmission from end device to gateway is referred as "uplink" and transmission from gateway to end device is referred as "downlink". There are different classes supported in LoRaWAN network viz Class A, Class B and Class C.


As shown in figure LoRa frame consists of uplink part and downlink part. In Class-A, LoRa frame has one uplink slot followed by two downlink slots. The frame is as per TDD topology. Refer LoRaWAN classes for other LoRa classes.


LoRa Protocol Stack

image005.jpg


The figure-2 depicts LoRa protocol stack consisting of Application layer, MAC layer, PHY layer and RF layer.
• Data from application layer and MAC commands required to establish connection between End device and gateway are carried as MAC payload.
• MAC layer constructs the MAC frame using MAC payload.
• PHY layer uses MAC frame as PHY payload and constructs the PHY frame after inserting Preamble, PHY header, PHY header CRC and entire frame CRC.
• RF layer modulates the PHY frame on required ISM RF carrier as per regulatory requirement and transmits on to the air. 


Note: Information provided on this page is derived from LoRaWAN Specification V1.0 released on Jan.2015 by LoRa™ Alliance. LoRa alliance is responsible for changes to the specifications at any time without notice. RF Wireless World is not responsible for any issues with regard to the same. Refer latest specifications published by LoRa Alliance ( https://www.lora-alliance.org ) for any changes required to be done for the products under development as per LoRa standard.
As we know LoRA is popular wireless technology used as wide area network for IoT (Internet of things).


image006.jpg

Figure-1 depicts typical components in a LoRA tranceiver chip. It consists of UART, processor, GPIOs, LoRA protocol stack, LoRA Radio layer, interface buses (e.g. I2C, SPI) etc. Microcontroller Unit is interfaced using UART with LoRA transceiver for monitor and control applications. GPIOs are used to interface any user defined hardware components such as LEDs, Switches etc. LoRA RF layer is interfaced with antenna of different frequency bands such as 433 and 868 MHz. LoRA transceiver requires crystal for running the processor and real time clock.

Inquiry