Dual SIM Backup Router

Dual SIM Backup Router

The Meizo RD588 series Dual SIM 4G Ethernet wireless router is designed to offer a failover 3G/4G network when the primary network fails. The router is using Broadcom chipset, integrated with WAN, LAN, SIM, VPN, VRRP, WiFi, and Serial port services, product line supporting the following radio...
Chat Now

Product Details

The Meizo RD588 series Dual SIM 4G Ethernet wireless router is designed to offer a failover 3G/4G network when the primary network fails. The router is using Broadcom chipset, integrated with WAN, LAN, SIM, VPN, VRRP, WiFi, and Serial port services, product line supporting the following radio access technologies: LTE, HSPA+, HSPA, UMTS, EDGE, CDMA2000, GPRS . By owning automatic connection monitoring and heartbeat detection, make sure the router to be always online.


The router is using Industrial Grade equipment design standards, passed CE and EMC test, stable and reliable. External antenna connectors make it possible to attach desired antennas and to easily find the best signal location. Multiple encryption protocols as L2TP, IPSec, PPTP and GRE are owned, making it ideal solution for applications in which high data bandwidth and strong stability is required.


Main Features

Hardware Specifications

Software Functions

● Support public and private APN network
● Dual SIM ensures that a backup 3G/4G network can take over should the primary network fail. The router detects a network problem and fails over to a standby SIM/APN, ensuring the customer’s SLAs are upheld.
● Dedicated hardware and software watchdog are designed to support system running reliable.
● ICMP detection and Heartbeat detection ensure the router to be always on line.
● Reboot the router remotely via SMS.
● Incorporate Virtual Router Redundancy Protocol (VRRP), facilitating 3G/4G WAN backup services to existing fixed line routers, providing both WAN and router redundancy to critical business applications.
● Offers business grade security and advanced routing features IPSec (3Des and AES), L2TP, PPTP, GRE as standard.
● Low-voltage, over current, over voltage, anti-reverse protection
● Wide Power Input DC7-36V
● Standard RS232/485 interface to connect with serial devices.
● Router Factory Default Settings can be configured freely.
● System logs can be viewed from local or remote.
● Support WLAN(300Mbps 802.11b/g/n)
● Support SNMP v1/v2/v3
● LEDS for status monitoring (showing Power, System, Internet, VPN, Signal strength).

CPU
● RAM:512Mbit FLASH:128Mbit
Power
● Input DC 7-36V(Standard DC12V)
Environment
● Storage temperature:-40℃~80℃
● Work temperature:-30℃~70℃
● Humidity:<95%
Dimension
● Unit size L*W*H:200*117.5*32.7mm
● Metal Shell, IP30
● Package weight:830g
Interface
● 2 SIM card slots
● 1 WAN 10/100Mb RJ45 port
● 4 LAN 10/100Mb RJ45 port
● 1 RS232 or RS485 serial port
● 1 5-PIN connector for GND, RX, TX, Power
Antenna(female)
● ANT1 for Cell, ANT2,3 for WiFi
EMC
● Electrostatic discharge immunity:EN6100-4-2, level 2
● RFEMS:EN6100-4-3, level 2
● Surge:EN6100-4-3, level 2
● PFMF:EN6100-4-6, level 2
● Shockwave immunity:EN6100-4-8, Horizontal / vertical direction 400A/m(>level 2)
Physical property
● Shockproof:IEC60068-2-27
● Drop test:IEC60068-2-32
● Vibration test:IEC60068-2-6

VPN
● IPSec client
● PPTP client
● L2TP server and client
● GRE client
WIFI
● Transmitting power: 17dbm
● Distance:Cover a radius of 100 meters in open area test
● Allow 50 users to access in theory
DTU(Serial port data transmission)
● TCP & UDP Server/Client
● Baud rate: 300~115200bps
● Up to 4 data service center communication
NAT
● Port Mapping
● Port Triggering
● DMZ
Firewall
● IP filtering
● MAC filtering
● URL filtering
QOS
● Manage uplink/downlink bandwidth via port or IP
Management
● Web
● Telnet
● TR-069 platform
Routing
● Static Routing
● Policy-Based Routing.
● Dynamic Routing


Model

Frequency & Band

Bandwidth(UL/DL)

Consumption

WiFi (-W)

Serial(-S)

Power

RD58A
(cat6, America network)

● FDD-LTE: 2100MHz(B1),1900MHz(B2), 1800MHz(B3), AWS(B4), 850MHz(B5), 2600MHz(B7),700MHz(B12),700MHz(B13), 800MHz(B20), 1900MHz(B25) , 850MHz(B26), 700MHz(B29), 2300MHz(B30),
● TDD-LTE: 2500MHz(B41)
● UMTS/HSPA+: 2100MHz(B1), 1900MHz(B2),1800MHz(B3), 1700MHz(B4), 850MHz(B5), 900MHz(B8)

FDD-LTE:50Mbps/300Mbps
DC HSPA+:5.76Mbps/42Mbps

Work:0.46A@12V DC
Peak:0.58A@12V DC

802.11n 300Mbps Option

RS232/RS485 Option

US/EU standard
Input: AC100~240V
Output: DC12V Option

RD58C
(China & Asia network)

● FDD-LTE: 2100MHz(B1), 1800MHz(B3), 900MHz(B8)
● TDD-LTE: 2600MHz(B38), 1900MHz(B39), 2300MHz(B40), 2500MHz(B41)
● UMTS/HSPA+: 2100MHz(B1), 850MHz(B5), 900MHz(B8), 1800MHz(B9)
● TD-SCDMA: B34, B39

FDD-LTE:50Mbps/150Mbps
TDD-LTE:10Mbps/112Mbps
DC HSPA+:5.76Mbps/42Mbps

Work:0.41A@12V DC
Peak:0.50A@12V DC

RD58E (Europe & Asia network)

● FDD-LTE: 2100MHz(B1), 1800MHz(B3), 850MHz(B5), 2600MHz(B7), 900MHz(B8), 800MHz(B20)
● TDD-LTE: 2600MHz(B38), 1900MHz(B39), 2300MHz(B40), 2500MHz(B41)
● UMTS/HSPA+: 2100MHz(B1), 1900MHz(B2), 850MHz(B5), 800MHz(B6), 900MHz(B8),

FDD-LTE:50Mbps/150Mbps
TDD-LTE:10Mbps/112Mbps
DC HSPA+:5.76Mbps/42Mbps

Work:0.41A@12V DC
Peak:0.50A@12V DC

RD58J
(cat6, Japan & Australia network)

● FDD-LTE: 2100MHz(B1), 1800MHz(B3), 850MHz(B5), 2600MHz(B7), 900MHz(B8), 800MHz(B18), 800MHz(B19), 1500MHz(B21), 700MHz(B28),
● TDD-LTE: 2600MHz(B38), 1900MHz(B39), 2300MHz(B40), 2500MHz(B41)
● WCDMA: 2100MHz(B1), 850MHz(B5), 850MHz(B6), 900MHz(B8), 1700MHz(B9), 850MHz(B19)
● TD-SCDMA: B39

FDD-LTE:50Mbps/300Mbps
TDD-LTE:10Mbps/112Mbps
DC-HSPA+: 5.76Mbps/42Mbps

Work:0.46A@12V DC
Peak:0.58A@12V DC


circuit switching(CS) vs packet switching(PS) networks | difference between circuit switching and packet switching
This page circuit switching vs packet switching describes difference between circuit switching(CS) and packet switching(PS).
This tutorial covers everything one like to know about networking basics including circuit switching vs packet switching, TCP/IP protocol fields, ARP/RARP protocol fields, what is IP address ,what is MAC address, networking devices which include hub, switch, bridge, router, gateway and firewall.


Circuit Switching
In circuit switching network dedicated channel has to be established before the call is made between users. The channel is reserved between the users till the connection is active. For half duplex communication, one channel is allocated and for full duplex communication, two channels are allocated. It is mainly used for voice communication requiring real time services without any much delay. 


image002.jpg


As shown in the figure 1, if user-A wants to use the network; it need to first ask for the request to obtain the one and then user-A can communicate with user-C. During the connection phase if user-B tries to call/communicate with user-D or any other user it will get busy signal from the network.


Packet Switching
In packet switching network unlike CS network, it is not required to establish the connection initially. The connection/channel is available to use by many users. But when capacity or number of users increases then it will lead to congestion in the network. Packet switched networks are mainly used for data and voice applications requiring non-real time scenarios. 


image004.jpg


As shown in the figure 2, if user-A wants to send data/information to user-C and if user-B wants to send data to user-D, it is simultaneously possible. Here information is padded with header which contains addresses of source and destination. This header is sniffed by intermediate switching nodes to determine their route and destination.


In packet switching, station breaks long message into packets. Packets are sent one at a time to the network. Packets are handled in two ways, viz. datagram and virtual circuit.
In datagram, each packet is treated independently. Packets can take up any practical route. Packets may arrive out of order and may go missing.


In virtual circuit, preplanned route is established before any packets are transmitted. The handshake is established using call request and call accept messages. Here each packet contains virtual circuit identifier(VCI) instead of the destination address. In this type, routing decisions for each packet are not needed.


Comparison between CS vs. PS networks
As shown above in Packet switched (PS) networks quality of service (QoS) is not guaranteed while in circuit switched (CS) networks quality is guaranteed.
PS is used for time insensitive applications such as internet/email/SMS/MMS/VOIP etc.
In CS even if user is not talking the channel cannot be used by any other users, this will waste the resource capacity at those intervals.
The example of circuit switched network is PSTN and example of packet switched network is GPRS/EDGE.
Following table summarizes difference between circuit switching and packet switching of type datagram and virtual circuit.


Circuit Switching

Packet Switching(Datagram type)

Packet Switching(Virtual Circuit type)

Dedicated path

No Dedicated path

No Dedicated path

Path is established for entire conversation

Route is established for each packet

Route is established for entire conversation

Call setup delay

packet transmission delay

call setup delay as well as packet transmission delay

Overload may block call setup

Overload increases packet delay

Overload may block call setup and increases packet delay

Fixed bandwidth

Dynamic bandwidth

Dynamic bandwidth

No overhead bits after call setup

overhead bits in each packet

overhead bits in each packet


Inquiry