Long Range Unlock Dual Band 3 LAN 1 Wan Port Lte 3G 4G Wireless WiFi Router with SIM Card Slot

Long Range Unlock Dual Band 3 LAN 1 Wan Port Lte 3G 4G Wireless WiFi Router with SIM Card Slot

The Meizo RD588 series Dual SIM 4G Ethernet wireless router is designed to offer a backup 3G/4G network when the primary network fails. The router is using Broadcom chipset, integrated with WAN, LAN, SIM, VPN, VRRP, WiFi, and Serial port services, product line supporting the following radio...
Chat Now

Product Details

Our company constantly strengthen our internal strength, work hand in hand with all walks of life, strive to create excellent Solar Photovoltaic Power Station Solutions, Industrial Adsl Router, 4G Ethernet Modem for our customers while constantly expanding market share. In excess of 15 years experiences in manufacturing and designing, so our items featured with best quality and competitive selling price. We hope to continuously improve the quality of service, provide the highest standard products for global users and become the market leader. We sincerely hope we can cooperate along with you inside the around long term.

The Meizo RD588 series Dual SIM 4G Ethernet wireless router is designed to offer a backup 3G/4G network when the primary network fails. The router is using Broadcom chipset, integrated with WAN, LAN, SIM, VPN, VRRP, WiFi, and Serial port services, product line supporting the following radio access technologies: LTE, HSPA+, HSPA, UMTS, EDGE, CDMA2000, GPRS . By owning automatic connection monitoring and heartbeat detection, make sure the router to be always online.

The router is using Industrial Grade equipment design standards, passed CE and EMC test, stable and reliable. External antenna connectors make it possible to attach desired antennas and to easily find the best signal location. Multiple encryption protocols as L2TP, IPSec, PPTP and GRE are owned, making it ideal solution for applications in which high data bandwidth and strong stability is required.

Main Features

Hardware Specifications

Software Functions

● Support public and private APN network
● Dual SIM ensures that a backup 3G/4G network can take over should the primary network fail. The router detects a network problem and fails over to a standby SIM/APN, ensuring the customer’s SLAs are upheld.
● Dedicated hardware and software watchdog are designed to support system running reliable.
● ICMP detection and Heartbeat detection ensure the router to be always on line.
● Reboot the router remotely via SMS.
● Incorporate Virtual Router Redundancy Protocol (VRRP), facilitating 3G/4G WAN backup services to existing fixed line routers, providing both WAN and router redundancy to critical business applications.
● Offers business grade security and advanced routing features IPSec (3Des and AES), L2TP, PPTP, GRE as standard.
● Low-voltage, over current, over voltage, anti-reverse protection
● Wide Power Input DC7-36V
● Standard RS232/485 interface to connect with serial devices.
● Router Factory Default Settings can be configured freely.
● System logs can be viewed from local or remote.
● Support WLAN(300Mbps 802.11b/g/n)
● Support SNMP v1/v2/v3
● LEDS for status monitoring (showing Power, System, Internet, VPN, Signal strength).

● RAM:512Mbit FLASH:128Mbit
● Input DC 7-36V(Standard DC12V)
● Storage temperature:-40℃~80℃
● Work temperature:-30℃~70℃
● Humidity:<95%
● Unit size L*W*H:200*117.5*32.7mm
● Metal Shell, IP30
● Package weight:830g
● 2 SIM card slots
● 1 WAN 10/100Mb RJ45 port
● 4 LAN 10/100Mb RJ45 port
● 1 RS232 or RS485 serial port
● 1 5-PIN connector for GND, RX, TX, Power
● ANT1 for Cell, ANT2,3 for WiFi
● Electrostatic discharge immunity:EN6100-4-2, level 2
● RFEMS:EN6100-4-3, level 2
● Surge:EN6100-4-3, level 2
● PFMF:EN6100-4-6, level 2
● Shockwave immunity:EN6100-4-8, Horizontal / vertical direction 400A/m(>level 2)
Physical property
● Shockproof:IEC60068-2-27
● Drop test:IEC60068-2-32
● Vibration test:IEC60068-2-6

● IPSec client
● PPTP client
● L2TP server and client
● GRE client
● Transmitting power: 17dbm
● Distance:Cover a radius of 100 meters in open area test
● Allow 50 users to access in theory
DTU(Serial port data transmission)
● TCP&UDP Server/Client
● Baud rate: 300~115200bps
● Up to 4 data service center communication
● Port Mapping
● Port Triggering
● IP filtering
● MAC filtering
● URL filtering
● Manage uplink/downlink bandwidth via port or IP
● Web
● Telnet
● TR-069 platform
● Static Routing
● Policy-Based Routing.
● Dynamic Routing


Frequency & Band



WiFi (-W)



(cat6, America network)

● FDD-LTE: 2100MHz(B1),1900MHz(B2), 1800MHz(B3), AWS(B4), 850MHz(B5), 2600MHz(B7),700MHz(B12),700MHz(B13), 800MHz(B20), 1900MHz(B25), 850MHz(B26), 700MHz(B29), 2300MHz(B30),
● TDD-LTE: 2500MHz(B41)
● UMTS/HSPA+: 2100MHz(B1), 1900MHz(B2),1800MHz(B3), 1700MHz(B4), 850MHz(B5), 900MHz(B8)

DC HSPA+:5.76Mbps/42Mbps

Work:0.46A@12V DC
Peak:0.58A@12V DC

802.11n 300Mbps




US/EU standard
Input: AC100~240V
Output: DC12V


(China & Asia network)

● FDD-LTE: 2100MHz(B1), 1800MHz(B3), 900MHz(B8)
● TDD-LTE: 2600MHz(B38), 1900MHz(B39), 2300MHz(B40), 2500MHz(B41)
● UMTS/HSPA+: 2100MHz(B1), 850MHz(B5), 900MHz(B8), 1800MHz(B9)
● TD-SCDMA: B34, B39

DC HSPA+:5.76Mbps/42Mbps

Work:0.41A@12V DC
Peak:0.50A@12V DC

RD58E (Europe & Asia network)

● FDD-LTE: 2100MHz(B1), 1800MHz(B3), 850MHz(B5), 2600MHz(B7), 900MHz(B8), 800MHz(B20)
● TDD-LTE: 2600MHz(B38), 1900MHz(B39), 2300MHz(B40), 2500MHz(B41)
● UMTS/HSPA+: 2100MHz(B1), 1900MHz(B2), 850MHz(B5), 800MHz(B6), 900MHz(B8),

DC HSPA+:5.76Mbps/42Mbps

Work:0.41A@12V DC
Peak:0.50A@12V DC

(cat6, Japan & Australia network)

● FDD-LTE: 2100MHz(B1), 1800MHz(B3), 850MHz(B5), 2600MHz(B7), 900MHz(B8), 800MHz(B18), 800MHz(B19), 1500MHz(B21), 700MHz(B28),
● TDD-LTE: 2600MHz(B38), 1900MHz(B39), 2300MHz(B40), 2500MHz(B41)
● WCDMA: 2100MHz(B1), 850MHz(B5), 850MHz(B6), 900MHz(B8), 1700MHz(B9), 850MHz(B19)

DC-HSPA+: 5.76Mbps/42Mbps

Work:0.46A@12V DC
Peak:0.58A@12V DC


Remote temperature logging

Remote temperature logging solutions are used in end applications to stream live data from remote equipment. This solution is perfect for monitoring real time information in life threatening or dangerous situations where immediate action is required without delay. Loss of connectivity can be tracked and dealt with by using the built in backup CSD (circuit switched dialup) connection to maintain a constant reliable connection. The logging of real time information can be performed in the background and logged results can be reported at a later date to provide an on the spot detailed analysis or daily/weekly/monthly/yearly summary statistics.

The solution enables devices to seamlessly stream information over the network to a central server or headquarters via a robust and reliable connection. Device connectivity enables any connected device to stream its information in real time for live updates and real time monitoring of end equipment.

Common application areas include:

Temperature logging

Temperature / humidity monitoring

Scheduled equipment logging to replace manual processes (clipboard and time stamp)

Real time monitoring of connected devices

Live updates in a central location

Monitoring trigger levels for automatic alarm generation

Resource monitoring

Device statistics


What is“load balancing”

In computing, load balancing improves the distribution of workloads across multiple computing resources, such as computers, a computer cluster, network links, central processing units, or disk drives. Load balancing aims to optimize resource use, maximize throughput, minimize response time, and avoid overload of any single resource. Using multiple components with load balancing instead of a single component may increase reliability and availability through redundancy. Load balancing usually involves dedicated software or hardware, such as a multilayer switch or a Domain Name System server process.

Load balancing differs from channel bonding in that load balancing divides traffic between network interfaces on a network socket (OSI model layer 4) basis, while channel bonding implies a division of traffic between physical interfaces at a lower level, either per packet (OSI modelLayer 3) or on a data link (OSI model Layer 2) basis with a protocol like shortest path bridging.

This way, when a server is down, its DNS will not respond and the web service does not receive any traffic. If the line to one server is congested, the unreliability of DNS ensures less HTTP traffic reaches that server. Furthermore, the quickest DNS response to the resolver is nearly always the one from the network's closest server, ensuring geo-sensitive load-balancing. A short TTL on the A-record helps to ensure traffic is quickly diverted when a server goes down. Consideration must be given the possibility that this technique may cause individual clients to switch between individual servers in mid-session.

Client-side random load balancing

Another approach to load balancing is to deliver a list of server IPs to the client, and then to have client randomly select the IP from the list on each connection.This essentially relies on all clients generating similar loads, and the Law of Large Numbers to achieve a reasonably flat load distribution across servers. It has been claimed that client-side random load balancing tends to provide better load distribution than round-robin DNS; this has been attributed to caching issues with round-robin DNS, that in case of large DNS caching servers, tend to skew the distribution for round-robin DNS, while client-side random selection remains unaffected regardless of DNS caching.

With this approach, the method of delivery of list of IPs to the client can vary, and may be implemented as a DNS list (delivered to all the clients without any round-robin), or via hardcoding it to the list. If a "smart client" is used, detecting that randomly selected server is down and connecting randomly again, it also provides fault tolerance.

Server-side load balancers

For Internet services, a server-side load balancer is usually a software program that is listening on the port where external clients connect to access services. The load balancer forwards requests to one of the "backend" servers, which usually replies to the load balancer. This allows the load balancer to reply to the client without the client ever knowing about the internal separation of functions. It also prevents clients from contacting back-end servers directly, which may have security benefits by hiding the structure of the internal network and preventing attacks on the kernel's network stack or unrelated services running on other ports.

Some load balancers provide a mechanism for doing something special in the event that all backend servers are unavailable. This might include forwarding to a backup load balancer, or displaying a message regarding the outage.

It is also important that the load balancer itself does not become a single point of failure. Usually load balancers are implemented in high-availability pairs which may also replicate session persistence data if required by the specific application

Our company is a private enterprise mainly operating a variety of imported well-known high-end brands Long Range Unlock Dual Band 3 LAN 1 Wan Port Lte 3G 4G Wireless WiFi Router with SIM Card Slot and advocating the enterprise spirit of professional, pragmatic, efficient, and innovative formed a good internal mechanism. From raw material warehousing, product R&D and design, to product production testing, each step and process has strict multiple inspection standards, integrating refined management into all links of production. Welcome your visiting!
Hot Tags: 4g dual sim router, China, suppliers, manufacturers, factory, buy, customized, price, Intelligent Transportation, Rugged Cellular Router, 4g Balanced Router, UMTS Router, Router 4g Wifi, Industrial Network Router


You Might Also Like