The Meizo R58 outdoor 4G router CPU is using Industrial Grade equipment design standards, passed CE, FCC and EMC test, stable and reliable. Multiple VPN encryption protocols as L2TP, IPSec, PPTP and GRE are owned, making it readily ideal for delivering optimal network connectivity to all oil and mining site, as well as serving as the reliable communication backbones for critical communication applications. Instant POS Setup for Credit Card Access in Remote Area . Its CPU is using Broadcom chipset, integrated with industrial grade 4G modem, offering WAN, LAN, SIM, VPN, VRRP, WiFi, and Serial port services, product line supporting the following radio access technologies: LTE, HSPA+, HSPA, UMTS, EDGE, CDMA2000, GPRS . By owning automatic connection monitoring and heartbeat detection, make sure the router to be always online.
The R58 4G/LTE products have thousands of installed bases in China, North America, South East Asia, Africa and other areas, too. Our outdoor 4G/LTE routers offer superior RF and antenna engineering for maximum LTE performance, as well as comprehensive networking solutions that are ready to be utilized in a diversity of revenue generating applications and vertical markets.
Main Features |
Hardware Specifications |
Software Functions |
● Support public and private APN network |
CPU |
VPN |
Model |
Frequency & Band |
Bandwidth(UL/DL) |
Consumption |
WiFi (-W) |
Serial(-S) |
Power |
R58A |
● FDD-LTE: 2100MHz(B1),1900MHz(B2), 1800MHz(B3), AWS(B4), 850MHz(B5), 2600MHz(B7),700MHz(B12),700MHz(B13), 800MHz(B20), 1900MHz(B25) , 850MHz(B26), 700MHz(B29), 2300MHz(B30), |
FDD-LTE:50Mbps/300Mbps |
Work:0.46A@12V DC |
802.11n 300Mbps Option |
RS232/RS485 Option |
US/EU standard |
R58C |
● FDD-LTE: 2100MHz(B1), 1800MHz(B3), 900MHz(B8) |
FDD-LTE:50Mbps/150Mbps |
Work:0.41A@12V DC |
|||
R58E (Europe & Asia network) |
● FDD-LTE: 2100MHz(B1), 1800MHz(B3), 850MHz(B5), 2600MHz(B7), 900MHz(B8), 800MHz(B20) |
FDD-LTE:50Mbps/150Mbps |
Work:0.41A@12V DC |
|||
R58J |
● FDD-LTE: 2100MHz(B1), 1800MHz(B3), 850MHz(B5), 2600MHz(B7), 900MHz(B8), 800MHz(B18), 800MHz(B19), 1500MHz(B21), 700MHz(B28), |
FDD-LTE:50Mbps/300Mbps |
Work:0.46A@12V DC |
What does VPN mean?
A virtual private network (VPN) extends a private network across a public network, and enables users to send and receive data across shared or public networks as if their computing devices were directly connected to the private network. Applications running across a VPN may therefore benefit from the functionality, security, and management of the private network.
VPN technology was developed to allow remote users and branch offices to securely access corporate applications and other resources. To ensure security, data would travel through secure tunnels and VPN users would use authentication methods – including passwords, tokens and other unique identification methods – to gain access to the VPN. In addition, Internet users may secure their transactions with a VPN, to circumvent geo-restrictions and censorship, or to connect to proxy servers to protect personal identity and location to stay anonymous on the Internet. However, some Internet sites block access to known VPN technology to prevent the circumvention of their geo-restrictions, and many VPN providers have been developing strategies to get around these roadblocks.
A VPN is created by establishing a virtual point-to-point connection through the use of dedicated connections, virtual tunneling protocols, or traffic encryption. A VPN available from the public Internet can provide some of the benefits of a wide area network(WAN). From a user perspective, the resources available within the private network can be accessed remotely.
Traditional VPNs are characterized by a point-to-point topology, and they do not tend to support or connect broadcast domains, so services such as Microsoft Windows NetBIOS may not be fully supported or work as they would on a local area network (LAN). Designers have developed VPN variants, such as Virtual Private LAN Service (VPLS), and Layer 2 Tunneling Protocols (L2TP), to overcome this limitation.
Early data networks allowed VPN-style remote connections through dial-up modem or through leased line connections utilizing Frame Relay and Asynchronous Transfer Mode (ATM) virtual circuits, provided through networks owned and operated by telecommunication carriers. These networks are not considered true VPNs because they passively secure the data being transmitted by the creation of logical data streams. They have been replaced by VPNs based on IP and IP/Multi-protocol Label Switching (MPLS) Networks, due to significant cost-reductions and increased bandwidth provided by new technologies such as digital subscriber line (DSL)[5] and fiber-optic networks.
VPNs can be either remote-access (connecting a computer to a network) or site-to-site (connecting two networks). In a corporate setting, remote-access VPNs allow employees to access their company's intranet from home or while travelling outside the office, and site-to-site VPNs allow employees in geographically disparate offices to share one cohesive virtual network. A VPN can also be used to interconnect two similar networks over a dissimilar middle network; for example, two IPv6 networks over an IPv4 network.
VPN systems may be classified by:
• the tunneling protocol used to tunnel the traffic
• the tunnel's termination point location, e.g., on the customer edge or network-provider edge
• the type of topology of connections, such as site-to-site or network-to-network
• the levels of security provided
• the OSI layer they present to the connecting network, such as Layer 2 circuits or Layer 3 network connectivity
• the number of simultaneous connections.
Security mechanisms
VPNs cannot make online connections completely anonymous, but they can usually increase privacy and security. To prevent disclosure of private information, VPNs typically allow only authenticated remote access using tunneling protocols and encryption techniques.
The VPN security model provides:
• confidentiality such that even if the network traffic is sniffed at the packet level (see network sniffer and deep packet inspection), an attacker would see only encrypted data
• sender authentication to prevent unauthorized users from accessing the VPN
• message integrity to detect any instances of tampering with transmitted messages.
Secure VPN protocols include the following:
• Internet Protocol Security (IPsec) was initially developed by the Internet Engineering Task Force (IETF) for IPv6, which was required in all standards-compliant implementations of IPv6 before RFC 6434 made it only a recommendation.[7] This standards-based security protocol is also widely used with IPv4 and the Layer 2 Tunneling Protocol. Its design meets most security goals: authentication, integrity, and confidentiality. IPsec uses encryption, encapsulating an IP packet inside an IPsec packet. De-encapsulation happens at the end of the tunnel, where the original IP packet is decrypted and forwarded to its intended destination.
• Transport Layer Security (SSL/TLS) can tunnel an entire network's traffic (as it does in the OpenVPN project and SoftEther VPN project) or secure an individual connection. A number of vendors provide remote-access VPN capabilities through SSL. An SSL VPN can connect from locations where IPsec runs into trouble with Network Address Translation and firewall rules.
• Datagram Transport Layer Security (DTLS) – used in Cisco AnyConnect VPN and in OpenConnect VPN to solve the issues SSL/TLS has with tunneling over UDP.
• Microsoft Point-to-Point Encryption (MPPE) works with the Point-to-Point Tunneling Protocol and in several compatible implementations on other platforms.
• Microsoft Secure Socket Tunneling Protocol (SSTP) tunnels Point-to-Point Protocol (PPP) or Layer 2 Tunneling Protocol traffic through an SSL 3.0 channel. (SSTP was introduced in Windows Server 2008 and in Windows Vista Service Pack 1.)
• Multi Path Virtual Private Network (MPVPN). Ragula Systems Development Company owns the registered trademark "MPVPN".
• Secure Shell (SSH) VPN – OpenSSH offers VPN tunneling (distinct from port forwarding) to secure remote connections to a network or to inter-network links. OpenSSH server provides a limited number of concurrent tunnels. The VPN feature itself does not support personal authentication.